An imbalance between the trends in two common air pollutants is unexpectedly triggering the creation of a class of airborne organic compounds not usually found in the atmosphere over urban areas of North America, according to a new study from Caltech.
An imbalance between the trends in two common air pollutants is unexpectedly triggering the creation of a class of airborne organic compounds not usually found in the atmosphere over urban areas of North America, according to a new study from Caltech.
For decades, efforts to reduce air pollution have led to cleaner air in U.S cities like Los Angeles, with subsequent improvements in public health. Those efforts have targeted both nitric oxides and hydrocarbons. Nitric oxide is a compound of nitrogen and oxygen emitted from engines (especially those powered by diesel fuel) and from coal power plants. Hydrocarbons, meanwhile, are the family of molecules made from chaining together hydrogen and carbon. These molecules are emitted from many sources including gasoline-powered cars, trucks, solvents, cleaners used both at home and in industrial settings, and even trees.
One way researchers track the changing rates of nitric oxide emissions and hydrocarbon emissions is by examining the ratio of the levels of non-methane atmospheric hydrocarbons to those of nitric oxide (methane, a powerful greenhouse gas, is tracked separately). From 1987 and 1997, that ratio dropped by a factor of two.
Read more at California Institute of Technology
Image via Pixabay