HIV, dengue, papillomavirus, herpes and Ebola – these are just some of the many viruses that kill millions of people every year, mostly children in developing countries. While drugs can be used against some viruses, there is currently no broad-spectrum treatment that is effective against several at the same time, in the same way that broad-spectrum antibiotics fight a range of bacteria. But researchers at EPFL's Supramolecular Nano-Materials and Interfaces Laboratory – Constellium Chair (SUNMIL) have created gold nanoparticles for just this purpose, and their findings could lead to a broad-spectrum treatment. Once injected in the body, these nanoparticles imitate human cells and “trick” the viruses. When the viruses bind to them – in order to infect them – the nanoparticles use pressure produced locally by this link-up to “break” the viruses, rendering them innocuous. The results of this research have just been published in Nature Materials.
HIV, dengue, papillomavirus, herpes and Ebola – these are just some of the many viruses that kill millions of people every year, mostly children in developing countries. While drugs can be used against some viruses, there is currently no broad-spectrum treatment that is effective against several at the same time, in the same way that broad-spectrum antibiotics fight a range of bacteria. But researchers at EPFL's Supramolecular Nano-Materials and Interfaces Laboratory – Constellium Chair (SUNMIL) have created gold nanoparticles for just this purpose, and their findings could lead to a broad-spectrum treatment. Once injected in the body, these nanoparticles imitate human cells and “trick” the viruses. When the viruses bind to them – in order to infect them – the nanoparticles use pressure produced locally by this link-up to “break” the viruses, rendering them innocuous. The results of this research have just been published in Nature Materials.
Pressing need for a broad-spectrum treatment
“Fortunately, we have drugs that are effective against some viruses, like HIV and hepatitis C,” says Francesco Stellacci, who runs SUNMIL, from the School of Engineering. “But these drugs work only on a specific virus.” Hence the need for broad-spectrum antiviral drugs. This would enable doctors to use a single drug to combat all viruses that are still deadly because no treatment currently exists. Such non-specific therapies are especially needed in countries – particularly in developing regions – where doctors do not have the tools they need to make accurate diagnoses. And broad-spectrum antiviral drugs would help curb the antimicrobial resistance resulting from the over-prescription of antibiotics. “Doctors often prescribe antibiotics in response to viral infections, since there is no other drug available. But antibiotics are only effective against bacteria, and this blanket use fosters the development of virus mutations and a build-up of resistance in humans,” says Stellacci.
Read more at École Polytechnique Fédérale de Lausanne