Approaching the second half of the century, the United States is likely to experience increases in the number of days with extreme heat, the frequency and duration of heat waves, and the length of the growing season. In response, it is anticipated that societal, agricultural and ecological needs will increase the demand on already-strained natural resources like water and energy. University of Illinois researchers have developed new, high-resolution climate models that may help policymakers mitigate these effects at a local level.
Approaching the second half of the century, the United States is likely to experience increases in the number of days with extreme heat, the frequency and duration of heat waves, and the length of the growing season. In response, it is anticipated that societal, agricultural and ecological needs will increase the demand on already-strained natural resources like water and energy. University of Illinois researchers have developed new, high-resolution climate models that may help policymakers mitigate these effects at a local level.
In a paper published in the journal Earth’s Future, atmospheric sciencesprofessor Donald Wuebbles, graduate student Zach Zobel and Argonne National Laboratory scientists Jiali Wang and Rao Kotamarthi demonstrate how increased-resolution modeling can improve future climate projections.
Many climate models use a spatial resolution of hundreds of kilometers. This approach is suitable for global-scale models that run for centuries into the future, but they fail to capture small-scale land and weather features that influence local atmospheric events, the researchers said.
“Our new models work at a spatial resolution of 12 km, allowing us to examine localized changes in the climate system across the continental U.S.,” Wuebbles said. “It is the difference between being able to resolve something as small as Champaign County versus the entire state of Illinois – it’s a big improvement.”
Read more at University of Illinois at Urbana-Champaign
Image: Illinois atmospheric sciences researchers Zach Zobel, left, and professor Donald Wuebbles led a team that developed new, high-resolution models that may help direct climate policy initiatives at the local level. (Credit: Photo by L. Brian Stauffer)