New research at the University of Waterloo could lead to the development of batteries that triple the range of electric vehicles.
The breakthrough involves the use of negative electrodes made of lithium metal, a material with the potential to dramatically increase battery storage capacity.
“This will mean cheap, safe, long-lasting batteries that give people much more range in their electric vehicles,” said Quanquan Pang, who led the research while he was a PhD candidate in chemistry at Waterloo.
The increased storage capacity, or energy density, could boost the distance electric vehicles are able to travel on a single charge, from about 200 kilometres to 600 kilometres.
New research at the University of Waterloo could lead to the development of batteries that triple the range of electric vehicles.
The breakthrough involves the use of negative electrodes made of lithium metal, a material with the potential to dramatically increase battery storage capacity.
“This will mean cheap, safe, long-lasting batteries that give people much more range in their electric vehicles,” said Quanquan Pang, who led the research while he was a PhD candidate in chemistry at Waterloo.
The increased storage capacity, or energy density, could boost the distance electric vehicles are able to travel on a single charge, from about 200 kilometres to 600 kilometres.
In creating the technology, Pang and fellow researchers, including supervisor Linda Nazar, a professor of chemistry at Waterloo and a Canada Research Chair in Solid State Energy Materials, had to overcome two challenges.
The first challenge involved a risk of fires and explosions caused by microscopic structural changes to the lithium metal during repeated charge-discharge cycles.
The second involved a reaction that creates corrosion and limits both how well the electrodes work and how long they last.
Read more at: University of Waterloo