Timing is critical for playing a musical instrument, swinging a baseball bat, and many other activities. Neuroscientists have come up with several models of how the brain achieves its exquisite control over timing, the most prominent being that there is a centralized clock, or pacemaker, somewhere in the brain that keeps time for the entire brain.
Timing is critical for playing a musical instrument, swinging a baseball bat, and many other activities. Neuroscientists have come up with several models of how the brain achieves its exquisite control over timing, the most prominent being that there is a centralized clock, or pacemaker, somewhere in the brain that keeps time for the entire brain.
However, a new study from MIT researchers provides evidence for an alternative timekeeping system that relies on the neurons responsible for producing a specific action. Depending on the time interval required, these neurons compress or stretch out the steps they take to generate the behavior at a specific time.
“What we found is that it’s a very active process. The brain is not passively waiting for a clock to reach a particular point,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.
Read more at Massachusetts Institute of Technology (MIT)
Image Credit: Christine Daniloff / MIT