Soil Researchers Quantify an Important, Underappreciated Factor in Carbon Release to the Atmosphere

Typography

Soil plays a critical role in global carbon cycling, in part because soil organic matter stores three times more carbon than the atmosphere. Now biogeochemist Marco Keiluweit at the University of Massachusetts Amherst and colleagues elsewhere for the first time provide evidence that anaerobic microsites play a much larger role in stabilizing carbon in soils than previously thought.

Soil plays a critical role in global carbon cycling, in part because soil organic matter stores three times more carbon than the atmosphere. Now biogeochemist Marco Keiluweit at the University of Massachusetts Amherst and colleagues elsewhere for the first time provide evidence that anaerobic microsites play a much larger role in stabilizing carbon in soils than previously thought.

Further, current models used to predict the release of climate-active CO2 from soils fail to account for these microscopic, oxygen-free zones present in many upland soils, they say.

“Without recognizing the importance of anaerobic microsites in stabilizing soil carbon in soils, models are likely to underestimate the vulnerability of the soil carbon reservoir to disturbance induced by climate or land use change,” write first author Keiluweit and colleagues at Stanford, Oregon State University, Lawrence Berkeley National Laboratory and the Institute of Soil Landscape Research, Germany.

Findings add another twist to the ongoing debate, they add, over “the mechanisms controlling long-term stabilization of carbon in soils.” Details appear in the current issue of Nature Communications.

Read more at University of Massachusetts at Amherst

Image: Wpsopo via Wikimedia Commons