Stuck where they are, plants have to adapt to their environments, responding to stresses like drought or pests by changing how they grow.
On a broader scale, crop breeders need to be able to develop new varieties that are adapted to a new location or changing growing conditions in the same area.
Stuck where they are, plants have to adapt to their environments, responding to stresses like drought or pests by changing how they grow.
On a broader scale, crop breeders need to be able to develop new varieties that are adapted to a new location or changing growing conditions in the same area.
Both types of adaptation rely on a pool of possibilities, the combinations from which one can choose. For the individual plant, those possibilities depend on the genome it was born with. For breeders, that pool of possibilities is the whole range of genomes of cultivated crops, which they can blend together to create new varieties.
Researchers at the University of Wisconsin–Madison wanted to know whether the last 100 years of selecting for corn that is acclimated to particular locations has changed its ability to adapt to new or stressful environments. By measuring populations of corn plants planted across North America, they could test how the corn genomes responded to different growing conditions. Writing Nov. 7 in Nature Communications, UW–Madison Professor of Agronomy Natalia de Leon, her student Joe Gage and colleagues at several institutions report that artificial selection by crop breeders has constricted the pool of possibilities for North American corn varieties.
Read more at University of Wisconsin-Madison
Image: Natalia de Leon takes notes on experimental corn plots at the West Madison Agricultural Research Station. By measuring populations of corn plants across North America, de Leon and colleagues could test how the corn genomes responded to different growing conditions.
PHOTO CREDIT: CORNBREEDING.WISC.EDU