Today, more than 1.3 billion people are living without regular access to power, including more than 300 million in India and 600 million in sub-Saharan Africa. In these and other developing countries, access to a main power grid, particularly in rural regions, is remote and often unreliable.
Increasingly, many rural and some urban communities are turning to microgrids as an alternative source of electricity. Microgrids are small-scale power systems that supply local energy, typically in the form of solar power, to localized consumers, such as individual households or small villages.
Today, more than 1.3 billion people are living without regular access to power, including more than 300 million in India and 600 million in sub-Saharan Africa. In these and other developing countries, access to a main power grid, particularly in rural regions, is remote and often unreliable.
Increasingly, many rural and some urban communities are turning to microgrids as an alternative source of electricity. Microgrids are small-scale power systems that supply local energy, typically in the form of solar power, to localized consumers, such as individual households or small villages.
However, the smaller a power system, the more vulnerable it is to outages. Small disturbances, such as plugging in a certain appliance or one too many phone chargers, can cause a microgrid to destabilize and short out.
For this reason, engineers have typically designed microgrids in simple, centralized configurations with thick cables and large capacitors. This limits the amount of power that any appliance can draw from a network — a conservative measure that increases a microgrid’s reliability but comes with a significant cost.
Continue reading at MIT.
Image via MIT.