Many climate-related studies, such as detection and attribution of historical climate change, projections of future climate and environments, and adaptation to future climate change, heavily rely on the performance of climate models. Concisely summarizing and evaluating model performance becomes increasingly important for climate model intercomparison and application, especially when more and more climate models participate in international model intercomparison projects.
Many climate-related studies, such as detection and attribution of historical climate change, projections of future climate and environments, and adaptation to future climate change, heavily rely on the performance of climate models. Concisely summarizing and evaluating model performance becomes increasingly important for climate model intercomparison and application, especially when more and more climate models participate in international model intercomparison projects.
Most of current model evaluation metrics, e.g., root mean square error (RMSE), correlation coefficient, standard deviation, measure the model performance in simulating individual variable. However, one often needs to evaluate a model’s overall performance in simulating multiple variables. To fill this gap, an article published in Geosci. Model Dev., presents a new multivariable integrated evaluation (MVIE) method.
Read more at Institute of Atmospheric Physics, Chinese Academy of Sciences
Image: This is a pyramid chart showing the relationship between three levels of metrics for multivariable integrated evaluation of climate model performance. (Credit: XU Zhongfeng)