We must move faster towards a low-carbon world if we are to limit global warming to 2 degrees C this century, experts have warned.
We must move faster towards a low-carbon world if we are to limit global warming to 2 degrees C this century, experts have warned.
Changes in electricity, heat, buildings, industry and transport are needed rapidly and must happen all together, according to researchers at the universities of Sussex, Manchester and Oxford in a new study published in the journal Science.
To provide a reasonable (66%) chance of limiting global temperature increases to below 2 degrees C, the International Energy Agency and International Renewable Energy Agency suggest that global energy-related carbon emissions must peak by 2020 and fall by more than 70% in the next 35 years.This implies a tripling of the annual rate of energy efficiency improvement, retrofitting the entire building stock, generating 95% of electricity from low-carbon sources by 2050 and shifting almost entirely towards electric cars.
This elemental challenge necessitates “deep decarbonisation” of electricity, transport, heat, industrial, forestry and agricultural systems across the world. But despite the recent rapid growth in renewable electricity generation, the rate of progress towards this wider goal remains slow.
Moreover, many energy and climate researchers remain wedded to disciplinary approaches that focus on a single piece of the low-carbon transition puzzle. A case in point is a recent Science Policy Forum proposing a ‘carbon law’ that will guarantee that zero-emissions are reached. This model-based prescription emphasizes a single policy instrument, but neglects the wider political, cultural, business, and social drivers of low carbon transitions.
A new, interdisciplinary study published in Science presents a ‘sociotechnical’ framework that explains how these different drivers can interlink and mutually reinforce one another and how the pace of the low carbon transition can be accelerated.
Continue reading at University of Sussex
Image via University of Sussex