Positive, Negative or Neutral, It All Matters: NASA Explains Space Radiation

Typography

Charged particles may be small, but they matter to astronauts. NASA’s Human Research Program (HRP) is investigating these particles to solve one of its biggest challenges for a human journey to Mars: space radiation and its effects on the human body.

Charged particles may be small, but they matter to astronauts. NASA’s Human Research Program (HRP) is investigating these particles to solve one of its biggest challenges for a human journey to Mars: space radiation and its effects on the human body.

“One of our biggest challenges on a mission to Mars is protecting astronauts from radiation,” said NASA Space Radiation Element Scientist Lisa Simonsen, Ph.D.. “You can’t see it; you can’t feel it.  You don’t know you’re getting bombarded by radiation.”

A common misconception of space radiation is that it’s similar to radiation on Earth. It’s actually quite different. On Earth, radiation coming from the sun and space is mainly absorbed and deflected by our atmosphere and magnetic field.

The main type of radiation people think of on Earth is found in the dentist's office – X-rays. Shielding against X-rays and other types of electromagnetic radiation usually consists of wearing a heavy, lead blanket.

Read more at NASA/Johnson Space Center

Image: Galactic cosmic rays (GCRs) are of most concern to NASA. It is challenging to shield against GCRs. They come from exploding stars called supernovae. (Credit: NASA)