NOAA-led team uses an innovative network approach to explain polygonal patterns in clouds.
Polygons are widespread in nature: Drying mud may crack into many-sided blocks, and bees shape honeycomb into regular, six-sided cells. Hexagons also appear in broad sheets of clouds across parts of Earth’s oceans, and now a team of researchers has used a network approach to analyze why. Their work promises to help scientists represent clouds more accurately in computer models of weather and climate change.
Large decks of stratocumulus clouds self-organize into honeycomb-like patterns. “These types of clouds cool the planet by reflecting solar radiation but their description in climate models is still rather crude,” said lead author Franziska Glassmeier. She found that she could use a relatively simple mathematical model to re-create the cloud patterns, which are shaped in nature by a complex interplay of physical processes.
The new paper, co-authored by NOAA scientist and CIRES Fellow Graham Feingold, is published in this week's edition of the journal Proceedings of the National Academy of Sciences. The work was supported in part by the CIRES Innovative Research Program.
Continue reading at CIRES
Image via CIRES