Artificial-intelligence research has been transformed by machine-learning systems called neural networks, which learn how to perform tasks by analyzing huge volumes of training data.
During training, a neural net continually readjusts thousands of internal parameters until it can reliably perform some task, such as identifying objects in digital images or translating text from one language to another. But on their own, the final values of those parameters say very little about how the neural net does what it does.
Artificial-intelligence research has been transformed by machine-learning systems called neural networks, which learn how to perform tasks by analyzing huge volumes of training data.
During training, a neural net continually readjusts thousands of internal parameters until it can reliably perform some task, such as identifying objects in digital images or translating text from one language to another. But on their own, the final values of those parameters say very little about how the neural net does what it does.
Understanding what neural networks are doing can help researchers improve their performance and transfer their insights to other applications, and computer scientists have recently developed some clever techniques for divining the computations of particular neural networks.
Continue reading at Massachusetts Institute of Technology (MIT)
Image: Researchers will present a new general-purpose technique for making sense of neural networks trained to perform natural-language-processing tasks, in which computers attempt to interpret freeform texts written in ordinary, or natural language (as opposed to a programming language, for example).
Image Credits: Jose-Luis Olivares/MIT