Sandia National Laboratories has successfully demonstrated a new, more environmentally friendly method to test a rocket part to ensure its avionics can withstand the shock from stage separation during flight.
Sandia National Laboratories has successfully demonstrated a new, more environmentally friendly method to test a rocket part to ensure its avionics can withstand the shock from stage separation during flight.
The new method — called the Alternative Pyroshock Test — used a nitrogen-powered gas gun to shoot a 100-pound steel projectile into a steel resonant beam, which then transfers energy through a resonant cone attached to the part being tested. The resulting energy transfer mimics the conditions of stage separation in space. The first test of this type using the flight hardware was completed this spring.
Until now, pyroshock tests to ensure aerospace parts were ready for the rigors of flight had used explosives encased in lead to provide the impacts to parts needed for such experiments, mechanical engineer Mark Pilcher said.
The lead and explosives were environmental hazards, so cleanup was costly and time-consuming. The Sandia Labs team wanted a better approach.
Read more at DOE/Sandia National Laboratories
Image: Sandia National Laboratories' Mike Beabout and Patrick Barnes, left to right top, and Mark Stroman and Jamison Lee, left to right bottom, prepare a nitrogen-powered gas gun for the labs' Alternative Pyroshock Test by installing a resonant cone to a resonant beam. Sandia successfully demonstrated a more environmentally friendly way to ensure avionics can withstand the shock from stage separation during flight. (Credit: Sandia National Laboratories/Randy Montoya)