In May of this year, China claimed a breakthrough in tapping an obscure fossil fuel resource: Researchers there managed to suck a steady flow of methane gas out of frozen mud on the seafloor. That same month, Japan did the same. And in the United States, researchers pulled a core of muddy, methane-soaked ice from the bottom of the Gulf of Mexico.
The idea of exploiting this quirky fuel source would have been considered madness a couple of decades ago — both wildly expensive and dangerous. Until recently, methane-soaked ice was considered explosively unstable. In the Gulf of Mexico, traditional oil rigs have been tiptoeing around these icy deposits for years, trying to avoid them.
In May of this year, China claimed a breakthrough in tapping an obscure fossil fuel resource: Researchers there managed to suck a steady flow of methane gas out of frozen mud on the seafloor. That same month, Japan did the same. And in the United States, researchers pulled a core of muddy, methane-soaked ice from the bottom of the Gulf of Mexico.
The idea of exploiting this quirky fuel source would have been considered madness a couple of decades ago — both wildly expensive and dangerous. Until recently, methane-soaked ice was considered explosively unstable. In the Gulf of Mexico, traditional oil rigs have been tiptoeing around these icy deposits for years, trying to avoid them.
“These deposits have been a pain in the neck for oil exploration,” says Scott Dallimore with the Geological Survey of Canada. Accidentally melting deposits overlying traditional oil and gas fields could cause drilling infrastructure to collapse, or pipes to clog up with ice. After the Deepwater Horizon oil rig exploded in the Gulf of Mexico in 2010, for example, water and methane formed an icy plug that scuppered one attempt to halt the oil spill.
Read more at Yale Environment 360
Image: Methane hydrate on fire. Credits: J. Pinkston and L. Stern / USGS