Mosses used to evaluate atmospheric conditions in urban areas

Typography

Researchers have developed a method to evaluate atmospheric conditions using mosses (bryophytes) in urban areas, a development that could facilitate broader evaluations of atmospheric environments.

Many urban areas face atmospheric problems such as pollution and the heat island effect. With the need to evaluate atmospheric conditions, bioindicators—organisms whose response to environmental changes indicates the health of an ecosystem—have attracted considerable attention. Their merits include being able to evaluate an environment over a wide area at a low cost; detect environmental changes over an extended period; and assess these changes’ effects on the ecosystem. Bryophytes are one such group of plants known to be sensitive to environmental changes, in particular to atmospheric conditions.

Researchers have developed a method to evaluate atmospheric conditions using mosses (bryophytes) in urban areas, a development that could facilitate broader evaluations of atmospheric environments.

Many urban areas face atmospheric problems such as pollution and the heat island effect. With the need to evaluate atmospheric conditions, bioindicators—organisms whose response to environmental changes indicates the health of an ecosystem—have attracted considerable attention. Their merits include being able to evaluate an environment over a wide area at a low cost; detect environmental changes over an extended period; and assess these changes’ effects on the ecosystem. Bryophytes are one such group of plants known to be sensitive to environmental changes, in particular to atmospheric conditions.

The research team led by Yoshitaka Oishi of Fukui Prefectural University and Professor Tsutomu Hiura of Hokkaido University’s Field Science Center for Northern Biosphere studied how bryophytes can be a tool for evaluating complex atmospheric conditions in urban areas.

Read more at Hokkaido University

Image: Fissidens nobilis, a simple-structured moss that is sensitive to environmental changes (Credit: Oishi Y. and Hiura T)