Study projects deaths from heat and cold for 10 U.S. metros through 2090

Typography

A new analysis projects that inaction on climate change could lead to tens of thousands more heat-related deaths annually in U.S. metropolitan areas within a few generations.

A new study projects that if climate change continues unabated, heat-related deaths will rise dramatically in 10 major U.S. metropolitan areas compared to if the predicted increase in global warming is substantially curbed and cities take steps to adapt.

“The conversation about climate change is typically focused on the costs of mitigation, but this paper shows the human toll of policy inaction,” said senior author Gregory Wellenius, associate professor of epidemiology in the Brown University School of Public Health. “These results show the cost in terms of human lives due to just this one aspect of climate change: temperature. We have here an opportunity to save lives and improve people’s health.”

The analysis, published in the journal Environment International, is based on a set of internationally accepted temperature models through the decade 2085-2095 and the research team’s calculations of present-day temperature-related mortality specific to Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, Miami, New York, Philadelphia and Washington D.C.

The study forecasts deaths due to heat and cold for two different possible futures: A “better case” in which policy and technology mitigate climate change, yielding only a 1.8-degree Celsius increase in average global temperature by 2100, and a “worse case” in which greenhouse emissions continue growing at the current pace, leading to a 3.7-degree Celsius increase globally by 2100.

Across all 10 metropolitan areas, assuming no population growth at all, the study forecasts a “worse case” range of mortality averaging 10,300 heat-related deaths a year by 2050 and 26,000 heat-related deaths annually by 2090, compared to only about 2,300 in 1997. In the “better case” the heat-related deaths rise “only” to around 7,700 by 2050 and 10,400 by 2090 from the 1997 baseline.

Continue reading at Brown University

Image via Brown University