The first in-car measurements of exposure to pollutants that cause oxidative stress during rush hour commutes has turned up potentially alarming results. The levels of some forms of harmful particulate matter inside car cabins was found to be twice as high as previously believed.
Most traffic pollution sensors are placed on the ground alongside the road and take continuous samples for a 24-hour period. Exhaust composition, however, changes rapidly enough for drivers to experience different conditions inside their vehicles than these roadside sensors. Long-term sampling also misses nuanced variabilities caused by road congestion and environmental conditions.
The first in-car measurements of exposure to pollutants that cause oxidative stress during rush hour commutes has turned up potentially alarming results. The levels of some forms of harmful particulate matter inside car cabins was found to be twice as high as previously believed.
Most traffic pollution sensors are placed on the ground alongside the road and take continuous samples for a 24-hour period. Exhaust composition, however, changes rapidly enough for drivers to experience different conditions inside their vehicles than these roadside sensors. Long-term sampling also misses nuanced variabilities caused by road congestion and environmental conditions.
To explore what drivers are actually exposed to during rush hour, researchers from Duke University, Emory University and the Georgia Institute of Technology strapped specially designed sampling devices into the passenger seats of cars during morning rush hour commutes in downtown Atlanta.
The devices detected up to twice as much particulate matter as the roadside sensors. The team also found that the pollution contained twice the amount of chemicals that cause oxidative stress, which is thought to be involved in the development of many diseases including respiratory and heart disease, cancer, and some types of neurodegenerative diseases.
Read more at Duke University
Image: A schematic of the sampling device built by researchers to measure levels of toxic particulate matter present during rush hour inside of a typical car cabin. Credit: Heidi Vreeland, Duke University