Energy-efficient accelerator was 50 years in the making

Typography

With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years ago.

CBETA tests two energy-saving technologies for accelerators: energy recovery and permanent magnets. An energy recovery linac (ERL) like CBETA reclaims the energy of a used electron beam instead of dumping it after the experiment. The recovered energy is used to accelerate the next beam of particles, creating a beam of electrons that can be used for many areas of research. The beams are accelerated by Superconducting Radio Frequency (SRF) units, another energy-efficient technology pioneered at Cornell.

With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years ago.

CBETA tests two energy-saving technologies for accelerators: energy recovery and permanent magnets. An energy recovery linac (ERL) like CBETA reclaims the energy of a used electron beam instead of dumping it after the experiment. The recovered energy is used to accelerate the next beam of particles, creating a beam of electrons that can be used for many areas of research. The beams are accelerated by Superconducting Radio Frequency (SRF) units, another energy-efficient technology pioneered at Cornell.

By using permanent magnets, the power that is usually needed to steer the beam with electromagnets is saved. While energy recovery linacs and fixed magnets are being used elsewhere, never before has a group been able to steer four particle beams of different energies simultaneously by using fixed magnets through an ERL.

Continue reading at Cornell University

Photo: Main linac cryomodule being placed into its final position by Cornell Engineers at Wilson Lab. Credit: Cornell University