Cornell materials scientists and bioelectrochemical engineers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.
Cornell materials scientists and bioelectrochemical engineers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.
The researchers created electro-spun carbon nanofiber electrodes and coated them with a conductive polymer, called PEDOT, to compete with carbon cloth electrodes available on the market. When the PEDOT coating is applied, an electrically active layer of bacteria – Geobacter sulfurreducens – naturally grows to create electricity and transfer electrons to the novel electrode.
The conducting nanofibers create a favorable surface for this bacteria, which digests pollutants from the wastewater and produces electricity, according to the research.
“Electrodes are expensive to make now, and this material could bring the price of electrodes way down, making it easier to clean up polluted water,” said co-lead author Juan Guzman, a doctoral candidate in the field of biological and environmental engineering.
Read more at Cornell University
Image: Carbon nanofibers coated with PEDOT in a scanning electron microscope image. (Credit: Juan Guzman and Meryem Pehlivaner/Provided)