As farmers survey their fields this summer, several questions come to mind: How many plants germinated per acre? How does altering row spacing affect my yields? Does it make a difference if I plant my rows north to south or east to west? Now a computer model can answer these questions by comparing billions of virtual fields with different planting densities, row spacings, and orientations.
As farmers survey their fields this summer, several questions come to mind: How many plants germinated per acre? How does altering row spacing affect my yields? Does it make a difference if I plant my rows north to south or east to west? Now a computer model can answer these questions by comparing billions of virtual fields with different planting densities, row spacings, and orientations.
The University of Illinois and the Partner Institute for Computational Biology in Shanghai developed this computer model to predict the yield of different crop cultivars in a multitude of planting conditions. Published in BioEnergy Research, the model depicts the growth of 3D plants, incorporating models of the biochemical and biophysical processes that underlie productivity.
Teaming up with the University of Sao Paulo in Brazil, they used the model to address a question for sugarcane producers: How much yield might be sacrificed to take advantage of a possible conservation planting technique?
Continue reading at Carl R. Woese Institute for Genomic Biology
Image: Sugarcane planted in with traditional spacing (pictured here) is better for yields but may be worse for plants and soil quality. (Credits: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign)