Batteries that "drink" seawater could power long-range underwater vehicles

Typography

The long range of airborne drones helps them perform critical tasks in the skies. Now MIT spinout Open Water Power (OWP) aims to greatly improve the range of unpiloted underwater vehicles (UUVs), helping them better perform in a range of applications under the sea.

Recently acquired by major tech firm L3 Technologies, OWP has developed a novel aluminum-water power system that’s safer and more durable, and that gives UUVs a tenfold increase in range over traditional lithium-ion batteries used for the same applications.

The long range of airborne drones helps them perform critical tasks in the skies. Now MIT spinout Open Water Power (OWP) aims to greatly improve the range of unpiloted underwater vehicles (UUVs), helping them better perform in a range of applications under the sea.

Recently acquired by major tech firm L3 Technologies, OWP has developed a novel aluminum-water power system that’s safer and more durable, and that gives UUVs a tenfold increase in range over traditional lithium-ion batteries used for the same applications.

The power systems could find a wide range of uses, including helping UUVs dive deeper, for longer periods of time, into the ocean’s abyss to explore ship wreckages, map the ocean floor, and conduct research. They could also be used for long-range oil prospecting out at sea and various military applications.

With the acquisition, OWP now aims to ramp up development of its power systems, not just for UUVs, but also for various ocean-floor monitoring systems, sonar buoy systems, and other marine-research devices.

Continue reading at Massachusetts Institute of Technology

Image: Open Water Power’s battery that "drinks" in sea water to operate is safer and cheaper, and provides a tenfold increase in range, over traditional lithium-ion batteries used for unpiloted underwater vehicles. The power system consists of an alloyed aluminum anode, an alloyed cathode, and an alkaline electrolyte positioned between the electrodes. Components are only activated when flooded with water. Once the aluminum anode corrodes, it can be replaced at low cost.  Courtesy of Open Water Power