When you think of turbulence, you might think of a bumpy plane ride. Turbulence, however, is far more ubiquitous to our lives than just air travel. Ocean waves, smoke from fire, even noise coming from jet engines or wind turbines are all related to turbulence.
When you think of turbulence, you might think of a bumpy plane ride. Turbulence, however, is far more ubiquitous to our lives than just air travel. Ocean waves, smoke from fire, even noise coming from jet engines or wind turbines are all related to turbulence.
A team of researchers at RWTH Aachen University’s Institute of Aerodynamics (AIA) has long been interested in using computation to understand turbulence—one of the major challenging mysteries of fluid dynamics—and how it relates to aircraft noise, fuel efficiency, or the transport of pollutants, among other research interests.
The team has been using the Cray XC40 Hazel Hen supercomputer at the High-Performance Computing Center Stuttgart to study turbulent multiphase flows—the movement of two materials in different states (such as solids and liquids) or materials in the same state that, for chemical reasons, cannot mix (such as oil and water). The team is also working to improve the accuracy of turbulence simulations on more modest computers.
Recently, the team published a paper in the Journal of Fluid Mechanics detailing its roadmap towards better modeling of turbulent multiphase flows. The work supports the team’s larger interdisciplinary goals. “This project is part of a bigger research unit where we research how to make coal power plants more environmentally friendly regarding their CO2 emissions,” said RWTH researcher Dr. Matthias Meinke.
Read more at Gauss Centre for Supercomputing
Image: Using the HLRS Hazel Hen machine, RWTH Aachen University researchers were able to run a DNS simulation on a system of 45,000 particles at the Kolmogorov scale. To the team's knowledge, this is the direct-particle simulation for the largest number of particles at this scale to date, and serves as a benchmark for how other researchers studying this process can get more realistic simulation results. (Credit: L. Schneiders, M. Meinke, and W. Schröder. RWTH Aachen University, AIA)