How killer cells take out tumours

Typography

The use of immunotherapy to treat cancer is celebrating its first successes – but there are still many knowledge gaps in the underlying mechanisms of action. In a study of mice with soft tissue tumours, ETH researchers have now shown how endogenous killer cells track down the tumours with the help of dormant viruses.

The use of immunotherapy to treat cancer is celebrating its first successes – but there are still many knowledge gaps in the underlying mechanisms of action. In a study of mice with soft tissue tumours, ETH researchers have now shown how endogenous killer cells track down the tumours with the help of dormant viruses.

The promising drug is known as F8-TNF. When injected into the bloodstream, it lures killer cells from the body’s immune system towards sarcomas. The killer cells then destroy the tumours. Researchers from ETH Zurich, led by Professor Dario Neri at the Institute of Pharmaceutical Sciences, developed F8-TNF four years ago. Since then, they have been able to show that it can completely cure sarcomas in mice when combined with a chemotherapeutic agent. Such an effective treatment cannot be achieved by chemotherapy alone or with other therapeutic approaches. Now, a drug closely related to F8-TNF is being tested as part of clinical trials in humans.

Consisting of two sub-units, the F8-TNF molecule works rather like a store detective: just as a detective tracks down a shoplifter and detains it until the police arrive, the molecule identifies cancer cells using its F8 sub-unit and then uses its TNF part to lure killer cells (cytotoxic T cells). TNF is an immune system messenger.

Read more at ETH Zurich

Photo credit: Linda Bartlett via Wikimedia Commons