Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast U.S. Shelf have found that commercially important species will continue to shift their distribution as ocean waters warm two to three times faster than the global average through the end of this century. Projected increases in surface to bottom waters of 6.6 to 9 degrees F (3.7 to 5.0 degrees Celsius) from current conditions are expected.
The findings, reported in Progress in Oceanography, suggest ocean temperature will continue to play a major role in where commercially important species will find suitable habitat. Sea surface temperatures in the Gulf of Maine have warmed faster than 99 percent of the global ocean over the past decade. Northward shifts of many species are already happening, with major changes expected in the complex of species occurring in different regions on the shelf, and shifts from one management jurisdiction to another. These changes will directly affect fishing communities, as species now landed at those ports move out of range, and new species move in.
Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast U.S. Shelf have found that commercially important species will continue to shift their distribution as ocean waters warm two to three times faster than the global average through the end of this century. Projected increases in surface to bottom waters of 6.6 to 9 degrees F (3.7 to 5.0 degrees Celsius) from current conditions are expected.
The findings, reported in Progress in Oceanography, suggest ocean temperature will continue to play a major role in where commercially important species will find suitable habitat. Sea surface temperatures in the Gulf of Maine have warmed faster than 99 percent of the global ocean over the past decade. Northward shifts of many species are already happening, with major changes expected in the complex of species occurring in different regions on the shelf, and shifts from one management jurisdiction to another. These changes will directly affect fishing communities, as species now landed at those ports move out of range, and new species move in.
“Species that are currently found in the Mid-Atlantic Bight and on Georges Bank may have enough suitable habitat in the future because they can shift northward as temperatures increase,” said lead author Kristin Kleisner, formerly of the Northeast Fisheries Science Center (NEFSC)‘s Ecosystems Dynamics and Assessment Branch and now a senior scientist at the Environmental Defense Fund. ”Species concentrated in the Gulf of Maine, where species have shifted to deeper water rather than northward, may be more likely to experience a significant decline in suitable habitat and move out of the region altogether.”
Continue reading at Northeast Fisheries Science Center – NOAA
Photo via NOAA.