“I’m strong to the finich, ‘cause I eats me spinach!” said Popeye the Sailor Man.
While you may not gulp spinach by the can-fuls, if you love spanakopita or your go-to appetizer is spinach artichoke dip, then you’ll be excited to know that new research out of Boyce Thompson Institute (BTI) will make it even easier to improve this nutritious and delicious, leafy green.
“I’m strong to the finich, ‘cause I eats me spinach!” said Popeye the Sailor Man.
While you may not gulp spinach by the can-fuls, if you love spanakopita or your go-to appetizer is spinach artichoke dip, then you’ll be excited to know that new research out of Boyce Thompson Institute (BTI) will make it even easier to improve this nutritious and delicious, leafy green.
Today in Nature Communications, researchers from BTI and the Shanghai Normal University report a new draft genome of Spinacia oleracea, better known as spinach. Additionally, the authors have sequenced the transcriptomes (all the RNA) of 120 cultivated and wild spinach plants, which has allowed them to identify which genetic changes have occurred due to domestication.
“The spinach genome sequence and transcriptome variants developed in this study provide a wealth of valuable information that can be used to breed spinach with better disease-resistance, higher yield and better quality,” asserted Zhangjun Fei, the project’s lead researcher from BTI.
Read more at Boyce Thompson Institute
Photo credit: Nillerdk via Wikimedia Commons