The fossil fuel fight goes on for USC scientists as they develop a new method for creating reversible hydrogen storage based on methanol, with no carbon emissions, in the last major paper co-authored by USC’s first Nobel laureate, the late George Olah.
The fossil fuel fight goes on for USC scientists as they develop a new method for creating reversible hydrogen storage based on methanol, with no carbon emissions, in the last major paper co-authored by USC’s first Nobel laureate, the late George Olah.
Scientists have long struggled with generating and storing hydrogen, the kind that might one day provide the backbone for renewable energy fuel cells that make our cars move, warm our houses and help produce food, in a way that also won’t hasten climate change or otherwise harm the environment.
In research published earlier this year in the Journal of the American Chemical Society, chemists at the USC Loker Hydrocarbon Research Institute outlined a carbon-neutral method for doing just that, with a little help from the simplest alcohol known to man: methanol.
Senior author G. K. Surya Prakash, 1994 Nobel Prize in Chemistry winner Olah in his last major paper and their team at the USC Dornsife College of Letters, Arts and Sciences devised a way to produce and store hydrogen from methanol, without concurrent production of either carbon monoxide or carbon dioxide, by trapping it in organic derivatives of ammonia called amines.
Read more at University of Southern California
Image: USC scientists have found a way to tap hydrogen fuel from methanol without producing concurrent carbon. (Credit: G. K. Surya Prakash)