Wi-fi on rays of light: 100 times faster, and never overloaded

Typography

Slow wi-fi is a source of irritation that nearly everyone experiences. Wireless devices in the home consume ever more data, and it’s only growing, and congesting the wi-fi network. Researchers at Eindhoven University of Technology have come up with a surprising solution: a wireless network based on harmless infrared rays. The capacity is not only huge (more than 40Gbit/s per ray) but also there is no need to share since every device gets its own ray of light. This was the subject for which TU/e researcher Joanne Oh received her PhD degree with the ‘cum laude’ distinction last week.

Slow wi-fi is a source of irritation that nearly everyone experiences. Wireless devices in the home consume ever more data, and it’s only growing, and congesting the wi-fi network. Researchers at Eindhoven University of Technology have come up with a surprising solution: a wireless network based on harmless infrared rays. The capacity is not only huge (more than 40Gbit/s per ray) but also there is no need to share since every device gets its own ray of light. This was the subject for which TU/e researcher Joanne Oh received her PhD degree with the ‘cum laude’ distinction last week.

The system conceived in Eindhoven is simple and, in principle, cheap to set up. The wireless data comes from a few central ‘light antennas’, for instance mounted on the ceiling, which are able to very precisely direct the rays of light supplied by an optical fiber. Since there are no moving parts, it is maintenance-free and needs no power: the antennas contain a pair of gratings that radiate light rays of different wavelengths at different angles (‘passive diffraction gratings’). Changing the light wavelengths also changes the direction of the ray of light. Since a safe infrared wavelength is used that does not reach the vulnerable retina in your eye, this technique is harmless. 

No interference

If you walk around as a user and your smartphone or tablet moves out of the light antenna’s line of sight, then another light antenna takes over. The network tracks the precise location of every wireless device using its radio signal transmitted in the return direction. It is a simple matter to add devices: they are assigned different wavelengths by the same light antenna and so do not have to share capacity. Moreover, there is no longer any interference from a neighboring wi-fi network.

Read more at Eindhoven University of Technology

Image: Joanne Oh. (Credit: Bart van Overbeeke)