In theory, oil and water don’t mix. In reality, the two liquids can be almost impossible to separate, especially from complex chemical cocktails such as the wastewater produced by Alberta’s oil sands mining operations.
In theory, oil and water don’t mix. In reality, the two liquids can be almost impossible to separate, especially from complex chemical cocktails such as the wastewater produced by Alberta’s oil sands mining operations.
Contaminated by small amounts of bitumen and other oily substances, this wastewater can’t be discharged to the environment and is held in vast ponds awaiting treatment. A new potential solution developed by researchers at U of T's Faculty of Applied Science & Engineering starts with a surprisingly simple device: a sponge.
U of T PhD student Pavani Cherukupally leads the project under the supervision of Professor Chul Park and Assistant Professor Amy Bilton. Previous work in Park’s lab focused on designing sponges that could be deployed to soak up oil in the event of a spill – these were made of superhydrophobic materials, which repel water but attract neutrally charged substances like oil.
Cherukupally is modifying the process to treat oil sands wastewater. Her idea is to pump the contaminated water through the sponges: due to attractive forces, the oily contaminants should stick to the surface of the sponge, while the clean water should flow straight through.
Continue reading at University of Toronto.
Photo via University of Toronto.