Wastewater from oil and gas operations – including fracking for shale gas – at a West Virginia site altered microbes downstream, according to a Rutgers-led study.
The study, published recently in Science of the Total Environment, showed that wastewater releases, including briny water that contained petroleum and other pollutants, altered the diversity, numbers and functions of microbes. The shifts in the microbial community indicated changes in their respiration and nutrient cycling, along with signs of stress.
Wastewater from oil and gas operations – including fracking for shale gas – at a West Virginia site altered microbes downstream, according to a Rutgers-led study.
The study, published recently in Science of the Total Environment, showed that wastewater releases, including briny water that contained petroleum and other pollutants, altered the diversity, numbers and functions of microbes. The shifts in the microbial community indicated changes in their respiration and nutrient cycling, along with signs of stress.
The study also documented changes in antibiotic resistance in downstream sediments, but did not uncover hot spots, or areas with high levels of resistance. The findings point to the need to understand the impacts on microbial ecosystems from accidental releases or improper treatment of fracking-related wastewater. Moreover, microbial changes in sediments may have implications for the treatment and beneficial reuse of wastewater, the researchers say.
“My hope is that the study could be used to start making hypotheses about the impacts of wastewater,” said Nicole Fahrenfeld, lead author of the study and assistant professor in Rutgers’ Department of Civil and Environmental Engineering. Much remains unknown about the impacts of wastewater from fracking, she added.
Continue reading at Rutgers University
Image Credits: U.S. Environmental Protection Agency