NASA scientists studying high-altitude radiation recently published new results on the effects of cosmic radiation in our atmosphere. Their research will help improve real-time radiation monitoring for aviation industry crew and passengers working in potentially higher radiation environments.
Imagine you’re sitting on an airplane. Cruising through the stratosphere at 36,000 feet, you’re well above the clouds and birds, and indeed, much of the atmosphere. But, despite its looks, this region is far from empty.
NASA scientists studying high-altitude radiation recently published new results on the effects of cosmic radiation in our atmosphere. Their research will help improve real-time radiation monitoring for aviation industry crew and passengers working in potentially higher radiation environments.
Imagine you’re sitting on an airplane. Cruising through the stratosphere at 36,000 feet, you’re well above the clouds and birds, and indeed, much of the atmosphere. But, despite its looks, this region is far from empty.
Just above you, high-energy particles, called cosmic rays, are zooming in from outer space. These speedy particles crash wildly into molecules in the atmosphere, causing a chain reaction of particle decays. While we are largely protected from this radiation on the ground, up in the thin atmosphere of the stratosphere, these particles can affect humans and electronics alike.
Launched in September 2015 near Fort Sumner, New Mexico, NASA’s Radiation Dosimetry Experiment, or RaD-X, used a giant helium-filled balloon to send instruments into the stratosphere to measure cosmic radiation coming from the sun and interstellar space. The results, presented in a special issue of the Space Weather Journal, showcase some of the first measurements of their kind at altitudes from 26,000 to over 120,000 feet above Earth.
“The measurements, for the first time, were taken at seven different altitudes, where the physics of dosimetry is very different,” said Chris Mertens, principal investigator of the RaD-X mission at NASA’s Langley Research Center in Hampton, Virginia. “By having the measurements at these seven altitudes we’re really able to test how well our models capture the physics of cosmic radiation.”
Continue reading at NASA - Goddard Space Flight Center.
Photo via NASA - Goddard Space Flight Center.