Drugs that contain one or more fluorine atoms tend to be more stable, more powerful, and easier for the body to absorb. For those reasons, drug developers would like to be able to incorporate fluorine or a fluorine-containing unit known as trifluoromethyl into new experimental drugs, but this has been very difficult to do.
Now, a team of chemists at MIT and Boston College has discovered a new type of catalyst that can incorporate a trifluoromethyl group within a variety of organic molecules. The availability of these exceptionally efficient and selective catalysts should allow researchers to rapidly generate potential new fluorinated drugs, including antibiotics and anticancer agents, for testing.
Drugs that contain one or more fluorine atoms tend to be more stable, more powerful, and easier for the body to absorb. For those reasons, drug developers would like to be able to incorporate fluorine or a fluorine-containing unit known as trifluoromethyl into new experimental drugs, but this has been very difficult to do.
Now, a team of chemists at MIT and Boston College has discovered a new type of catalyst that can incorporate a trifluoromethyl group within a variety of organic molecules. The availability of these exceptionally efficient and selective catalysts should allow researchers to rapidly generate potential new fluorinated drugs, including antibiotics and anticancer agents, for testing.
The new catalysts use a nontoxic foam-blowing agent (which is conventionally used to spread insulation) as the source of fluorine atoms.
“The fact that this fluorinated compound behaves in this reaction like its nonfluorinated analog is really amazing,” says Richard Schrock, the Frederick G. Keyes Professor of Chemistry at MIT and one of the senior authors of the paper, which appears in the Jan. 23 issue of Nature.
Continue reading at Massachusetts Institute of Technology
Image Credit: Christine Daniloff / Massachusetts Institute of Technology