TGen identifies compound that could improve drug development against brain cancer

Typography

A study led by scientists at the Translational Genomics Research Institute (TGen) has identified "a potent inhibitory compound" in the elusive hunt for an improved treatment against glioblastoma, the most common and deadly type of adult brain cancer.

Aurintricarboxylic Acid (ATA) is a chemical compound that in laboratory tests was shown to block the chemical cascade that otherwise allows glioblastoma cells to invade normal brain tissue and resist both chemo and radiation therapy, according to a TGen-led report published today in the scientific journal Oncotarget.

 

A study led by scientists at the Translational Genomics Research Institute (TGen) has identified "a potent inhibitory compound" in the elusive hunt for an improved treatment against glioblastoma, the most common and deadly type of adult brain cancer.

Aurintricarboxylic Acid (ATA) is a chemical compound that in laboratory tests was shown to block the chemical cascade that otherwise allows glioblastoma cells to invade normal brain tissue and resist both chemo and radiation therapy, according to a TGen-led report published today in the scientific journal Oncotarget.

"The findings of this study could represent a breakthrough in our efforts to find an effective long-term treatment against glioblastoma multiforme (GBM)," said Dr. Harshil Dhruv, an Assistant Professor in TGen's Cancer and Cell Biology Division, and a lead author of the study.

Initial treatment of glioblastoma consists of surgical removal of the tumor, radiation and chemotherapy using the drug temozolomide (TMZ). However, the proclivity of glioblastoma to invade adjacent brain tissue prevents the surgical removal of all tumor cells. Plus, invasive glioblastoma cells show resistance to TMZ, resulting in the cancer's eventual return and the patient's death, often within a year.

Continue reading at The Translational Genomics Research Institute

Image Credit: TGen