Soil is a major carbon pool, whose impact on climate change is still not fully understood. According to a recent study, however, soil carbon stocks and could be modelled more accurately by factoring in the impacts of both soil nutrient status and soil composition. Determining the volume of carbon dioxide efflux from soil is important to enabling better choices in forest management with respect to curbing climate change. Knowledge of the extent and regional variation of soil carbon stocks is vital. Current soil carbon stock predictions are unreliable and it is difficult to estimate the volume of carbon dioxide efflux that is emitted from soil as a result of climate change.
Soil is a major carbon pool, whose impact on climate change is still not fully understood. According to a recent study, however, soil carbon stocks and could be modelled more accurately by factoring in the impacts of both soil nutrient status and soil composition. Determining the volume of carbon dioxide efflux from soil is important to enabling better choices in forest management with respect to curbing climate change. Knowledge of the extent and regional variation of soil carbon stocks is vital. Current soil carbon stock predictions are unreliable and it is difficult to estimate the volume of carbon dioxide efflux that is emitted from soil as a result of climate change.
The study, which was a joint venture of the Natural Resources Institute Finland (Luke), the Swedish University of Agricultural Sciences (SLU) and the Japanese Forestry and Forest Products Research Institute (FFPRI), focused on analysing a Swedish soil carbon inventory data set and comparing actual soil carbon measurements to soil carbon models.
Continue reading at ScienceDaily
Image credit: U.S. Department of Agriculture