There has been a massive boom in wind power capacity both in Europe and worldwide. In 2015 global installed capacity was around 350 gigawatt (GW), with 135 GW installed in Europe, distributed across some 87,000 wind turbines. Wind power now provides a bigger share (13 percent) of electricity than nuclear power stations. In countries such as Spain, Denmark and Germany, the amount of wind power already installed is in theory enough to cover nationwide demand for electricity under ideal conditions, i.e. maximum wind power output and low consumer demand.
There has been a massive boom in wind power capacity both in Europe and worldwide. In 2015 global installed capacity was around 350 gigawatt (GW), with 135 GW installed in Europe, distributed across some 87,000 wind turbines. Wind power now provides a bigger share (13 percent) of electricity than nuclear power stations. In countries such as Spain, Denmark and Germany, the amount of wind power already installed is in theory enough to cover nationwide demand for electricity under ideal conditions, i.e. maximum wind power output and low consumer demand.
Inconsistent output
However, the amount of installed capacity says very little about how much electricity is actually fed into the national grid by a country's wind fleet. Unlike nuclear power, wind is by nature harder to predict. This makes it difficult to connect wind farms to existing power grids.
Both energy researchers and providers therefore need to simulate electricity production across very short time intervals to accurately predict how high the load could be at any given point in time.
Recently, researchers have started performing such simulations with the help of "reanalysis" models: global meteorological models fed with measured data such as from weather stations and satellites, which process these measurements into a coherent world-wide simulation of atmospheric conditions.
Continue reading at EurekAlert!
Photo courtesy of Vattenfall via Climate.gov