Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer

Typography

Designers of solar cells may soon be setting their sights higher, as a discovery by a team of researchers has revealed a class of materials that could be better at converting sunlight into energy than those currently being used in solar arrays. Their research shows how a material can be used to extract power from a small portion of the sunlight spectrum with a conversion efficiency that is above its theoretical maximum -- a value called the Shockley-Queisser limit. This finding, which could lead to more power-efficient solar cells, was seeded in a near-half-century old discovery by Russian physicist Vladimir M. Fridkin, a visiting professor of physics at Drexel, who is also known as one of the innovators behind the photocopier.

Designers of solar cells may soon be setting their sights higher, as a discovery by a team of researchers has revealed a class of materials that could be better at converting sunlight into energy than those currently being used in solar arrays. Their research shows how a material can be used to extract power from a small portion of the sunlight spectrum with a conversion efficiency that is above its theoretical maximum -- a value called the Shockley-Queisser limit. This finding, which could lead to more power-efficient solar cells, was seeded in a near-half-century old discovery by Russian physicist Vladimir M. Fridkin, a visiting professor of physics at Drexel, who is also known as one of the innovators behind the photocopier.

The team, which includes scientists from Drexel University, the Shubnikov Institute of Crystallography of the Russian Academy of Sciences, the University of Pennsylvania and the U. S. Naval Research Laboratory recently published its findings in the journal Nature Photonics. Their article "Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator," explains how they were able to use a barium titanate crystal to convert sunlight into electric power much more efficiently than the Shockley-Queisser limit would dictate for a material that absorbs almost no light in the visible spectrum -- only ultraviolet.

Continue reading at EurekAlert!

Image via Berkeley Lab / U.S. Department of Energy