The largest ever study of howling in the 'canid' family of species -- which includes wolves, jackals and domestic dogs -- has shown that the various species and subspecies have distinguishing repertoires of howling, or "vocal fingerprints": different types of howls are used with varying regularity depending on the canid species.
Researchers used computer algorithms for the first time to analyse howling, distilling over 2,000 different howls into 21 howl types based on pitch and fluctuation, and then matching up patterns of howling.
They found that the frequency with which types of howls are used -- from flat to highly modulated -- corresponded to the species of canid, whether dog or coyote, as well as to the subspecies of wolf.
The largest ever study of howling in the 'canid' family of species -- which includes wolves, jackals and domestic dogs -- has shown that the various species and subspecies have distinguishing repertoires of howling, or "vocal fingerprints": different types of howls are used with varying regularity depending on the canid species.
Researchers used computer algorithms for the first time to analyse howling, distilling over 2,000 different howls into 21 howl types based on pitch and fluctuation, and then matching up patterns of howling.
They found that the frequency with which types of howls are used -- from flat to highly modulated -- corresponded to the species of canid, whether dog or coyote, as well as to the subspecies of wolf.
For example, the howling repertoire of the timber wolf is heavy with low, flat howls but doesn't feature the high, looping vocal that is the most frequently used in the range of howls deployed by critically-endangered red wolves.
Lead researcher Dr Arik Kershenbaum from the University of Cambridge describes these distinctive howl repertoires as resembling vocal dialects, with each species having its own identifiable use of the various howl types. He says the findings could be used to track and manage wild wolf populations better, and help mitigate conflict with farmers.
The origins of language development in humans are mysterious, as the vocalisations of our closest existing biological relatives such as chimpanzees are relatively simple. Kershenbaum and colleagues believe that studying the sounds of other intelligent species that use vocal communication for cooperative behaviour -- such as wolves and dolphins -- may provide clues to the earliest evolution of our own use of language.
Howling Wolf image via Shutterstock.
Read more at EurekAlert.