Do not underestimate the babbling brook. When it comes to greenhouse gases, these bucolic water bodies have the potential to create a lot of hot air. According to a new analysis in the journal Ecological Monographs, by researchers at the University of Wisconsin–Madison and colleagues, the world’s rivers and streams pump about 10 times more methane into our atmosphere than scientists estimated in previous studies.
Do not underestimate the babbling brook. When it comes to greenhouse gases, these bucolic water bodies have the potential to create a lot of hot air.
According to a new analysis in the journal Ecological Monographs, by researchers at the University of Wisconsin–Madison and colleagues, the world’s rivers and streams pump about 10 times more methane into our atmosphere than scientists estimated in previous studies. The new study also found that human activity seems to drive which streams are the biggest contributors.
“Scientists know that inland waters, like lakes and reservoirs, are big sources of methane,” says Emily Stanley, a professor at the UW–Madison Center for Limnology and lead author of the paper. Yet accurately measuring emissions of methane from these sources has remained a challenge.
Like carbon dioxide, methane is a greenhouse gas that traps heat at the Earth’s surface. It is less prevalent than carbon dioxide in the atmosphere but also more potent: A molecule of methane results in more warming than a molecule of carbon dioxide. Understanding how much methane is emitted into the atmosphere from all sources helps scientists account for the full global greenhouse gas budget, and take measures to mitigate its impact.
Rivers and streams haven’t received much attention in accounting for that budget, Stanley says, because they don’t take up much surface area on a global scale and, with respect to methane, didn’t seem to be all that gassy. But over the years, measurements taken by Stanley and her lab members seemed to indicate these sources may produce more methane than scientists had previously known.
Together with other center researchers and scientists at the University of Winnipeg and the U.S. Geological Survey’s LandCarbon Project, the team created a database of measured methane flux (the exchange of the gas between water and atmosphere) and methane concentrations measured in streams and rivers using data from 111 publications and three unpublished datasets.
The research team then used two different methods to calculate the best estimates of global methane emissions from the data. They found the emissions to be an order of magnitude higher than scientists had previously reported.
Continue reading at University of Wisconsin-Madison.
Brook image via Shutterstock.