What is the climate waiting for Russia and Europe in 15-20 years? Will be there weather abnormalities in the coming decades? Will some areas experience more severe winter, while the others will have hot summer? It all depends on how much the climate will be affected by the dynamics of the possible onset of minimum solar magnetic activity. The Sun's behaviour in future cycles is the main theme of a publication on the forecast and explanation of the minima of solar activity. The paper was prepared with contributions from Elena Popova from the Skobeltsyn Institute of Nuclear Physics (Lomonosov Moscow State University) and was published in Scientific Reports.
Scientists have studied the evolution of the solar magnetic field and the number of sunspots on the Sun's surface. The amplitude and the spatial configuration of the magnetic field of our star are changing over the years. Every 11 years the number of sunspots decreases sharply. Every 90 years this reduction (when it coincides with the 11-year cycle) reduces the number of spots by about a half. A 300-400 year lows reduce their numbers almost to zero. Best known minimum is the Maunder minimum, which lasted roughly from 1645 to 1715. During this period, there were about 50 sunspots instead of the usual 40,000-50,000.
What is the climate waiting for Russia and Europe in 15-20 years? Will be there weather abnormalities in the coming decades? Will some areas experience more severe winter, while the others will have hot summer? It all depends on how much the climate will be affected by the dynamics of the possible onset of minimum solar magnetic activity. The Sun's behaviour in future cycles is the main theme of a publication on the forecast and explanation of the minima of solar activity. The paper was prepared with contributions from Elena Popova from the Skobeltsyn Institute of Nuclear Physics (Lomonosov Moscow State University) and was published in Scientific Reports.
Scientists have studied the evolution of the solar magnetic field and the number of sunspots on the Sun's surface. The amplitude and the spatial configuration of the magnetic field of our star are changing over the years. Every 11 years the number of sunspots decreases sharply. Every 90 years this reduction (when it coincides with the 11-year cycle) reduces the number of spots by about a half. A 300-400 year lows reduce their numbers almost to zero. Best known minimum is the Maunder minimum, which lasted roughly from 1645 to 1715. During this period, there were about 50 sunspots instead of the usual 40,000-50,000.
Analysis of solar radiation showed that its highs and lows almost coincide with the maxima and minima in the number of spots. By studying changes in the number of sunspots, analyzing the content of isotopes like carbon-14, beryllium-10, and others, in glaciers and trees, the researchers concluded that the solar magnetic activity has a cyclic structure.
A group of scientists -- Valentina Tarasova (Northumbria University, England, Space Research Institute, Ukraine), Elena Popova (SINP, MSU), Simon John Shepherd (University of Bradford, England) and Sergei Zharkov (University of Hull, England) -- analyzed three solar activity cycles from 1976 to 2009, using the so-called "principal component analysis," which allows reveal waves of solar magnetic field with the biggest contribution in the observational data. As a result of a new method of analysis, it was found that the magnetic waves in the Sun are generated in pairs, and the main pair is responsible for changes in the dipole field, which is observed when solar activity is changing. Also scientists have managed to obtain analytical formulas describing the evolution of both waves.
Trees in the snow image via Shutterstock.
Read more at ScienceDaily.