Global air travel contributes around 3.5 percent of the greenhouse forcing driving anthropogenic climate change, according to the International Panel on Climate Change (IPCC). But what impact does a warming planet have on air travel and how might that, in turn, affect the rate of warming itself? A new study by researchers at the Woods Hole Oceanographic Institution and University of Wisconsin Madison found a connection between climate and airline flight times, suggesting a feedback loop could exist between the carbon emissions of airplanes and our changing climate. The study was published today in Nature Climate Change.
Global air travel contributes around 3.5 percent of the greenhouse forcing driving anthropogenic climate change, according to the International Panel on Climate Change (IPCC). But what impact does a warming planet have on air travel and how might that, in turn, affect the rate of warming itself?
A new study by researchers at the Woods Hole Oceanographic Institution and University of Wisconsin Madison found a connection between climate and airline flight times, suggesting a feedback loop could exist between the carbon emissions of airplanes and our changing climate. The study was published today in Nature Climate Change.
“Upper level wind circulation patterns are the major factor in influencing flight times,” says lead author Kris Karnauskas, an associate scientist in WHOI’s Geology and Geophysics Department. “Longer flight times mean increased fuel consumption by airliners. The consequent additional input of CO2 into the atmosphere can feed back and amplify emerging changes in atmospheric circulation.”
The study began when co-author Hannah Barkley, a doctoral student in the MIT-WHOI Joint Program in Oceanography, asked Karnauskas a deceptively simple question. Barkley had noticed a direct flight she took from Honolulu back to the east coast—a route she has flown many times as field scientist—took far less time than expected, and she asked Karnauskas why that might be.
“The first thing that came to mind was, what did the flight-level winds look like that day,” Karnauskas says.
They quickly queried a database of the winds on a NOAA website, selecting for the altitude jets fly at and plugging in the date of Barkley’s flight, and saw that the jet stream that day was extra fast.
“There was just a big swath of extra-fast westerly winds stretching from Honolulu, Hawaii, to Newark,” says Karnauskas. “It was just serendipitous, as if she was part of some kind of golden mileage club where the atmosphere just opens up for you.”
The finding piqued their curiosity about just how unusual Barkley’s experience was, and the simple question led to a study of decades worth of data on flights between Honolulu and the North American West Coast (Los Angeles, San Francisco, and Seattle) by four different air carriers.
Continue reading at Woods Hole Oceanographic Institution.
Airplane image via Shutterstock.