What we can learn from the Seahorse

Typography

One of the ocean’s oddest little creatures, the seahorse, is providing inspiration for robotics researchers as they learn from nature how to build robots that have capabilities sometimes at odds with one another – flexible, but also tough and strong.

Their findings, published today in the journal Science, outline the virtues of the seahorse’s unusual skeletal structure, including a tail in which a vertebral column is surrounded by square bony plates. These systems may soon help create technology that offers new approaches to surgery, search and rescue missions or industrial applications.

One of the ocean’s oddest little creatures, the seahorse, is providing inspiration for robotics researchers as they learn from nature how to build robots that have capabilities sometimes at odds with one another – flexible, but also tough and strong.

Their findings, published today in the journal Science, outline the virtues of the seahorse’s unusual skeletal structure, including a tail in which a vertebral column is surrounded by square bony plates. These systems may soon help create technology that offers new approaches to surgery, search and rescue missions or industrial applications.

Although technically a fish, the seahorse has a tail that through millions of years of evolution has largely lost the ability to assist the animal in swimming. Instead, it provides a strong, energy-efficient grasping mechanism to cling to things such as seaweed or coral reefs, waiting for food to float by that it can suck into its mouth.

At the same time, the square structure of its tail provides flexibility; it can bend and twist, and naturally returns to its former shape better than animals with cylindrical tails. This helps the seahorse hide, easily bide its time while food floats to it, and it provides excellent crushing resistance - making the animal difficult for predators to eat.

“Human engineers tend to build things that are stiff so they can be controlled easily,” said Ross Hatton, an assistant professor in the College of Engineering at Oregon State University, and a co-author on the study. “But nature makes things just strong enough not to break, and then flexible enough to do a wide range of tasks. That’s why we can learn a lot from animals that will inspire the next gene

Seahorse image via Shutterstock.

Read more at University of Oregon.