Oregon State University study links climate changes in Northern and Southern Hemispheres - with 200 year lag

Typography

A new study using evidence from a highly detailed ice core from West Antarctica shows a consistent link between abrupt temperature changes on Greenland and Antarctica during the last ice age, giving scientists a clearer picture of the link between climate in the northern and southern hemispheres.

Greenland climate during the last ice age was very unstable, the researchers say, characterized by a number of large, abrupt changes in mean annual temperature that each occurred within several decades. These so-called “Dansgaard-Oeschger events” took place every few thousand years during the last ice age. Temperature changes in Antarctica showed an opposite pattern, with Antarctica cooling when Greenland was warm, and vice versa.

A new study using evidence from a highly detailed ice core from West Antarctica shows a consistent link between abrupt temperature changes on Greenland and Antarctica during the last ice age, giving scientists a clearer picture of the link between climate in the northern and southern hemispheres.

Greenland climate during the last ice age was very unstable, the researchers say, characterized by a number of large, abrupt changes in mean annual temperature that each occurred within several decades. These so-called “Dansgaard-Oeschger events” took place every few thousand years during the last ice age. Temperature changes in Antarctica showed an opposite pattern, with Antarctica cooling when Greenland was warm, and vice versa.

In this study funded by the National Science Foundation and published this week in the journal Nature, the researchers discovered that the abrupt climates changes show up first in Greenland, with the response to the Antarctic climate delayed by about 200 years. The researchers documented 18 abrupt climate events during the past 68,000 years.

“The fact that temperature changes are opposite at the two poles suggests that there is a redistribution of heat going on between the hemispheres,” said Christo Buizert, a post-doctoral research at Oregon State University and lead author on the study. “We still don’t know what caused these past shifts, but understanding their timing gives us important clues about the underlying mechanisms.

“The 200-year lag that we observe certainly hints at an oceanic mechanism,” Buizert added. “If the climatic changes were propagated by the atmosphere, the Antarctic response would have occurred in a matter of years or decades, not two centuries. The ocean is large and sluggish, thus the 200-year time lag is a pretty clear fingerprint of the ocean’s involvement.”

These past episodes of climate change differ in a major way from what is happening today, the researchers note. The abrupt events of the ice age were regional in scope – and likely tied to large-scale changes in ocean circulation. Warming today is global and primarily from human carbon dioxide emissions in the Earth’s atmosphere.

The key to the discovery was the analysis of a new ice core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, according to Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert.

Because the area where the ice core was drilled gets high annual snowfall, Brook said, the new ice core provides one of the most detailed records of Antarctic temperatures at a very high resolution. Greenland temperatures were already well-established, the researchers say, because of high annual snowfall and more available ice core data.

“Past ice core studies did not reveal the temperature changes as clearly as this remarkable core,” said Eric Steig, a professor in the Department of Earth and Space Sciences at the University of Washington, who co-wrote the paper. Steig’s laboratory made one of the key measurements that provides past Antarctic temperatures.

Antarctic mountains image via Shutterstock.

Read more at  Oregon State University.