The importance of oceanic phytoplankton

Typography

Do you have any idea just how many organizims are in seawater?  Not the fish you can see, but the microscopic organizims you cant see?

Dip a beaker into any portion of the world’s oceans, and you’re likely to pull up a swirling mix of planktonic inhabitants. The oceans are teeming with more than 5,000 species of phytoplankton — microscopic plants in a kaleidoscope of shapes and sizes. Together, phytoplankton anchor the ocean’s food chain, supplying nutrients to everything from single-celled organisms on up to fish and whales.

Through photosynthesis, these tiny organisms supply more than half the world’s oxygen. When these plants die, they drift to the ocean bottom, or evaporate into the air as carbon — a process that generates more than half the world’s cycling carbon.

Do you have any idea just how many organizims are in seawater?  Not the fish you can see, but the microscopic organizims you cant see?

Dip a beaker into any portion of the world’s oceans, and you’re likely to pull up a swirling mix of planktonic inhabitants. The oceans are teeming with more than 5,000 species of phytoplankton — microscopic plants in a kaleidoscope of shapes and sizes. Together, phytoplankton anchor the ocean’s food chain, supplying nutrients to everything from single-celled organisms on up to fish and whales.

Through photosynthesis, these tiny organisms supply more than half the world’s oxygen. When these plants die, they drift to the ocean bottom, or evaporate into the air as carbon — a process that generates more than half the world’s cycling carbon.

Phytoplankton play a fundamental role in regulating Earth’s climate. But figuring out exactly how these organisms contribute to climate change is a tricky undertaking, primarily because they are so diverse: Any given species may have a set of genetic or physical characteristics entirely different from any other, leading to different behaviors and habitats.

Such diversity can appear, at the outset, “bewilderingly complex,” says Mick Follows, an associate professor of oceanography in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). He says wrestling such diversity into global climate models is a futile task. But lumping phytoplankton into a big “black box” can be equally unenlightening.

Instead, Follows is working at an intermediary level, developing models of marine microbes at the cellular and community levels, to tease out fundamental processes that may be worked into global climate models.

Phytoplankon image via Shutterstock.

 

Read more at MIT.