Study examines the role of the deep ocean in carbon dioxide storage

Typography

The Southern Ocean plays an important role in the exchange of carbon dioxide between the atmosphere and the ocean. One aspect of this is the growth of phytoplankton, which acts as a natural sponge for carbon dioxide, drawing the troublesome greenhouse gas from the atmosphere into the sea. When these plankton die they can sink to the bottom of the ocean and store some of the carbon dioxide they have absorbed, a process scientists call the "biological carbon pump."

Although many areas of the Southern Ocean are rich in nutrients, they often lack iron, which limits phytoplankton growth. An important idea in oceanography is that adding iron to the Southern Ocean could stimulate phytoplankton growth and the biological carbon pump. Some scientists believe that this process can partly explain cycles in atmospheric carbon dioxide over Earth's recent history and it has also been widely debated as a mitigation strategy for climate change.

The Southern Ocean plays an important role in the exchange of carbon dioxide between the atmosphere and the ocean. One aspect of this is the growth of phytoplankton, which acts as a natural sponge for carbon dioxide, drawing the troublesome greenhouse gas from the atmosphere into the sea. When these plankton die they can sink to the bottom of the ocean and store some of the carbon dioxide they have absorbed, a process scientists call the "biological carbon pump."

​Although many areas of the Southern Ocean are rich in nutrients, they often lack iron, which limits phytoplankton growth. An important idea in oceanography is that adding iron to the Southern Ocean could stimulate phytoplankton growth and the biological carbon pump. Some scientists believe that this process can partly explain cycles in atmospheric carbon dioxide over Earth's recent history and it has also been widely debated as a mitigation strategy for climate change.

In two previous studies carried out in the last five years it has been shown that iron fertilization of the Southern Ocean can export carbon dioxide to the deep-sea. "However, to understand the net storage of carbon dioxide in the ocean interior, sinking phytoplankton are only one part of the story," explains Dr. Ian Salter from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. "These phytoplankton can be a food source for certain types of planktonic grazers, foraminifer and pteropods, that make shells from calcium carbonate -- a process which produces carbon dioxide."

The biogeochemist, and an international team of collaborators, were the first to quantify production and sinking of these calcium carbonate shells resulting from a phytoplankton bloom in the Southern Ocean, close to the Crozet Islands, with surprising results. Natural fertilization, caused by iron leached from the basaltic islands, increased the production and sinking of these calcium carbonate shells to a greater extent than sinking phytoplankton. This has important implications for the deep-sea storage of the carbon dioxide resulting from these blooms.

Image of deep sea floor via Shutterstock.

Read more at Science Daily.