Playing God with plants!

Typography
Plants make and store energy from the sun using a process called photosynthesis. This process has evolved on planet earth over millions of years. How can we mess with plant DNA to improve on what nature has evolved? Three research teams--each comprised of scientists from the United States and the United Kingdom--have been awarded a second round of funding to continue research on news ways to improve the efficiency of photosynthesis. The ultimate goal of this potentially high-impact research is to develop methods to increase yields of important crops that are harvested for food and sustainable biofuels. But if this research is successful, it may also be used to support reforestation efforts and efforts to increase the productivity of trees for the manufacture of wood and paper and thousands of other products that are derived from wood and chemicals extracted from trees. Another reason why photosynthesis is an important research topic: It has made the Earth hospitable for life by generating food and oxygen.

Plants make and store energy from the sun using a process called photosynthesis. This process has evolved on planet earth over millions of years. How can we mess with plant DNA to improve on what nature has evolved?

Three research teams--each comprised of scientists from the United States and the United Kingdom--have been awarded a second round of funding to continue research on news ways to improve the efficiency of photosynthesis.

!ADVERTISEMENT!

The ultimate goal of this potentially high-impact research is to develop methods to increase yields of important crops that are harvested for food and sustainable biofuels. But if this research is successful, it may also be used to support reforestation efforts and efforts to increase the productivity of trees for the manufacture of wood and paper and thousands of other products that are derived from wood and chemicals extracted from trees. Another reason why photosynthesis is an important research topic: It has made the Earth hospitable for life by generating food and oxygen.

A photosynthesizing organism uses sunlight and carbon dioxide to produce sugars that fuel the organism and release oxygen. But photosynthesis is a relatively inefficient process, usually capturing only about 5 percent of available energy, depending on how efficiency is measured. Nevertheless, some species of plants, algae and bacteria have evolved efficiency-boosting mechanisms that reduce energy losses or enhance carbon dioxide delivery to cells during photosynthesis.

Each of the three funded research teams is working, in a new and unique way, to improve, combine or engineer these types of efficiency-boosting mechanisms, so they may eventually be conferred on important crops that provide food or sustainable biofuels.

Scientists have long sought ways to increase the efficiency of photosynthesis but without, thus far, producing significant breakthroughs. The potentially transformational methods currently being pursued by the three funded teams were developed during an "Ideas Lab"--a workshop held in 2010 that was specially designed to generate innovative, potentially transformative research projects that might open longstanding bottlenecks to photosynthesis research.

If successful in helping to open such bottlenecks and generate ways to improve photosynthetic efficiency, any of the three re-funded research projects could provide critical support for efforts to address food and fuel challenges currently created by increasing human populations and other factors.

John Wingfield, NSF's assistant director for the Directorate of Biological Sciences, said, "Photosynthesis captures abundant and free solar energy and generates food and oxygen for the planet. Emerging technologies, like synthetic biology, are used in these potentially transformative projects to address the long-standing quest to increase efficiency of photosynthesis."

Photo of rainforest ferns via Shutterstock.

Read more at Research.gov.