Clouds play a critical role in Earth's climate and are the largest source of uncertainty in present climate models, stemming from cloud formation complexity, according to the latest report of the Intergovernmental Panel on Climate Change.
Clouds play a critical role in Earth's climate and are the largest source of uncertainty in present climate models, stemming from cloud formation complexity, according to the latest report of the Intergovernmental Panel on Climate Change.
!ADVERTISEMENT!
New research from scientists at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN, including Carnegie Mellon University's Neil Donahue, sheds light on new-particle formation — the very first step of cloud formation and a critical component of climate models. The findings, published in the May 16 issue of Science, closely match observations in the atmosphere and can help make climate prediction models more accurate.
Cloud droplets form when water vapor in the atmosphere condenses onto tiny particles. These particles are emitted directly from natural sources or human activity, or they form from precursors emitted originally as gaseous pollutants. The transformation of gas molecules into clusters and then into particles, a process called nucleation, produces more than half of the particles that seed cloud formation around the world today. But the mechanisms underlying nucleation remain unclear. Although scientists have observed that the nucleation process nearly always involves sulfuric acid, sulfuric acid concentrations aren't high enough to explain the rate of new particle formation that occurs in the atmosphere. This new study uncovers an indispensable ingredient to the long sought-after cloud formation recipe — highly oxidized organic compounds.
"Our measurements connect oxidized organics directly, and in detail, with the very first steps of new particle formation and growth," said Donahue, professor of chemistry, chemical engineering, engineering and public policy, and director of CMU's Steinbrenner Institute for Environmental Education and Research.
"We had no idea a year ago that this chemistry was happening. There's a whole branch of oxidation chemistry that we didn't really understand. It's an exciting time."
The air we breathe is chock-full of organic compounds, tiny liquid or solid particles that come from hundreds of sources including trees, volcanoes, cars, trucks and wood fires. Once they enter the atmosphere, these so-called organics start to change. In research published in the Proceedings of the National Academy of Sciences in 2012, Donahue and colleagues showed conclusively that organic molecules given off by pine trees, called alpha-pinene, are chemically transformed multiple times in the highly oxidizing environment of the atmosphere.
Additionally, other research, including from Donahue's lab, has suggested that such oxidized organics might take part in nucleation — both in new particle formation and in their subsequent growth. Donahue and an international team of researchers with the CLOUD experiment at CERN set out to test that hypothesis.
Read more at Carnegie Mellon University.
Cloud formation image via Shutterstock.