Nanosponges Could Intercept Coronavirus Infection

Typography

Nanoparticles cloaked in human lung cell membranes and human immune cell membranes can attract and neutralize the SARS-CoV-2 virus in cell culture, causing the virus to lose its ability to hijack host cells and reproduce. 

Nanoparticles cloaked in human lung cell membranes and human immune cell membranes can attract and neutralize the SARS-CoV-2 virus in cell culture, causing the virus to lose its ability to hijack host cells and reproduce. 

The first data describing this new direction for fighting COVID-19 were published on June 17, 2020 in the journal Nano Letters. The "nanosponges" were developed by engineers at the University of California San Diego and tested by researchers at Boston University.

The UC San Diego researchers call their nano-scale particles "nanosponges" because they soak up harmful pathogens and toxins.

In lab experiments, both the lung cell and immune cell types of nanosponges caused the SARS-CoV-2 virus to lose nearly 90% of its "viral infectivity" in a dose-dependent manner. Viral infectivity is a measure of the ability of the virus to enter the host cell and exploit its resources to replicate and produce additional infectious viral particles.

Read more at University Of California - San Diego

Image:  Researcher Anna Honko preparing the dilutions in deepwell plates at Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL).  Courtesy of the Griffiths lab at Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL).