Most of the world’s fertilizer is produced in large manufacturing plants, which require huge amounts of energy to generate the high temperatures and pressures needed to combine nitrogen and hydrogen into ammonia.
Most of the world’s fertilizer is produced in large manufacturing plants, which require huge amounts of energy to generate the high temperatures and pressures needed to combine nitrogen and hydrogen into ammonia.
MIT chemical engineers are working to develop a smaller-scale alternative, which they envision could be used to locally produce fertilizer for farmers in remote, rural areas, such as sub-Saharan Africa. Fertilizer is often hard to obtain in such areas because of the cost of transporting it from large manufacturing facilities.
In a step toward that kind of small-scale production, the research team has devised a way to combine hydrogen and nitrogen using electric current to generate a lithium catalyst, where the reaction takes place.
“In the future, if we envision how we want this to be used someday, we want a device that can breathe in air, take in water, have a solar panel hooked up to it, and be able to produce ammonia. This could be used by a farmer or a small community of farmers,” says Karthish Manthiram, an assistant professor of chemical engineering at MIT and the senior author of the study.
Read more at Massachusetts Institute of Technology
Image by Kurt Bouda from Pixabay