New discoveries about spider silk could inspire novel materials to manipulate sound and heat in the same way semiconducting circuits manipulate electrons, according to scientists at Rice University, in Europe and in Singapore.
A paper in Nature Materials today looks at the microscopic structure of spider silk and reveals unique characteristics in the way it transmits phonons, quasiparticles of sound.
The research shows for the first time that spider silk has a phonon band gap. That means it can block phonon waves in certain frequencies in the same way an electronic band gap - the basic property of semiconducting materials - allows some electrons to pass and stops others.
The researchers wrote that their observation is the first discovery of a "hypersonic phononic band gap in a biological material."
>> Read the Full Article