• Climate Change Will Drive Stronger, Smaller Storms in U.S.

    The effects of climate change will likely cause smaller but stronger storms in the United States, according to a new framework for modeling storm behavior developed at the University of Chicago and Argonne National Laboratory. Though storm intensity is expected to increase over today’s levels, the predicted reduction in storm size may alleviate some fears of widespread severe flooding in the future.

    The new approach, published today in Journal of Climate, uses new statistical methods to identify and track storm features in both observational weather data and new high-resolution climate modeling simulations. When applied to one simulation of the future effects of elevated atmospheric carbon dioxide, the framework helped clarify a common discrepancy in model forecasts of precipitation changes.

    >> Read the Full Article
  • Exploring the fate of the Earth's storehouse of carbon

    A new study predicts that warming temperatures will contribute to the release into the atmosphere of carbon that has long been locked up securely in the coldest reaches of our planet.

    Soil and climate expert Katherine Todd-Brown, a scientist at the Department of Energy's Pacific Northwest National Laboratory, is an author of the paper, published in the Dec. 1 issue of the journal Nature, which draws upon data collected through 49 separate field experiments around the world.

    The research was led by Thomas Crowther, formerly of Yale and now at the Netherlands Institute of Ecology, and colleague Mark Bradford at Yale. Scientists from more than 30 institutions across the globe, including PNNL, collaborated on the study.

    >> Read the Full Article
  • Corals much older than previously thought

    Coral genotypes can survive for thousands of years, possibly making them the longest-lived animals in the world, according to researchers at Penn State, the National Marine Fisheries Service and Dial Cordy & Associates.

    The team recently determined the ages of elkhorn corals  — Acropora palmata — in Florida and the Caribbean and estimated the oldest genotypes to be over 5,000 years old. The results are useful for understanding how corals will respond to current and future environmental change.

    >> Read the Full Article
  • Climate models may be overestimating the cooling effect of wildfire aerosols

    Whether intentionally set to consume agricultural waste or naturally ignited in forests or peatlands, open-burning fires impact the global climate system in two ways which, to some extent, cancel each other out. On one hand, they generate a significant fraction of the world’s carbon dioxide emissions, which drive up the average global surface temperature. On the other hand, they produce atmospheric aerosols, organic carbon, black carbon, and sulfate-bearing particulates that can lower that temperature either directly, by reflecting sunlight skyward, or indirectly, by increasing the reflectivity of clouds. Because wildfire aerosols play a key role in determining the future of the planet’s temperature and precipitation patterns, it’s crucial that today’s climate models — upon which energy and climate policymaking depend — accurately represent their impact on the climate system.

    >> Read the Full Article
  • With Climate Change, Not All Wildlife Population Shifts Are Predictable

    Wildlife ecologists who study the effects of climate change assume, with support from several studies, that warming temperatures caused by climate change are forcing animals to move either northward or upslope on mountainsides to stay within their natural climate conditions.

    But a new study of lowland and higher-mountain bird species by wildlife ecologists Bill DeLuca and David King at the University of Massachusetts Amherst now reports an unexpected and “unprecedented” inconsistency in such shifts. The majority of the mountain bird community responded against expectation and shifted downslope despite warming trends in the mountains. They say the result “highlights the need for caution when applying conventional expectations to species’ responses to climate change.”

    >> Read the Full Article
  • 102 Million Trees Have Died in California's Drought

    California’s six years of drought has left 102 million dead trees across 7.7 million acres of forest in its wake, the U.S. Forest Service (USFS) announced following an aerial survey. If that is not horrendous enough, 62 million trees died in the year 2016 alone—an increase of more than 100 percent compared to 2015.

    “The scale of die-off in California is unprecedented in our modern history,” Randy Moore, a forester for the U.S. Forest Service, told the Los Angeles Times, adding that trees are dying “at a rate much quicker than we thought.”

    >> Read the Full Article
  • Study Shows Climate Affecting Avian Breeding Habits

    Milder winters have led to earlier growing seasons and noticeable effects on the breeding habits of some predatory birds, according to research by Boise State biologists Shawn Smith and Julie Heath, in collaboration with Karen Steenhof, and The Peregrine Fund’s Christopher McClure. Their work was recently published in the Journal of Animal Ecology under the title “Earlier nesting by generalist predatory bird is associated with human responses to climate change.”

    >> Read the Full Article
  • OCEANIC 'HEAT SINK'

    A new multi-institutional study of the so-called global warming “hiatus” phenomenon — the possible temporary slowdown of the global mean surface temperature (GMST) trend said to have occurred from 1998 to 2013 — concludes the hiatus simply represents a redistribution of energy within the Earth system, which includes the land, atmosphere and the ocean.

    In a paper published today in Earth’s Future, a journal of the American Geophysical Union, lead author Xiao-Hai Yan of the University of Delaware, along with leading scientists from the National Oceanic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR), National Aeronautics and Space Administration (NASA), Scripps Institution of Oceanography, and University of Washington, discuss new understandings of the global warming “hiatus” phenomenon.

    >> Read the Full Article
  • The decline in emissions also has negative implications

    In large parts of Europe and North America, the decline in industrial emissions over the past 20 years has reduced pollution of the atmosphere and in turn of soils and water in many natural areas. The fact that this positive development can also have negative implications for these regions has been demonstrated by scientists at the Helmholtz Centre for Environmental Research (UFZ) in the journal Global Change Biology. According to their findings, declining nitrate concentrations in the riparian soils surrounding the tributary streams of reservoirs are responsible for the increasing release of dissolved organic carbon (DOC) and phosphate and a deterioration in water quality. In the case of drinking water reservoirs this can cause considerable problems with respect to water treatment.

    >> Read the Full Article
  • Ammonia-rich bird poop cools the atmosphere

    It turns out bird poop helps cool the Arctic.

    That’s according to new research from Colorado State University atmospheric scientists, who are working to better understand key components of Arctic climate systems.

    >> Read the Full Article